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Abstract

Can the heterogeneity of rating categories explain why many studies

have found that default risk accounts for only a small fraction of corpo-

rate bond spreads? To answer the question, we test structural models of

default using firm level data, thereby accounting for the large dispersions,

skewnesses and kurtoses of firm fundamentals inside rating categories.

We find that once the model risk premia is specified consistently with

historical default experience, the Merton [1974] model and the Leland

and Toft [1996] model cannot explain the level of spreads for investment

grade bonds. Furthermore, when the representative firm is calibrated to

historical default experience and one ignores the heterogeneity of rating

categories, the models performance is actually biased upward. The find-

ings are robust to the uncertainty about ex-ante default rates.
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1 Introduction

Rating categories are heterogeneous. Firms with different business risks and

leverages might have the same rating and a firm might keep a constant rating

while its fundamentals are fluctuating. This is not surprising because ratings

categories were designed in first place to be in few numbers and to be a stable

indication of a firm credit worthiness.

The heterogeneity of rating categories is closely related to the credit spread

puzzle. This puzzle illustrates the poor performance of structural models in

explaining investment grade bonds spreads. Many studies have found that het-

erogeneity helps address the puzzle [Feldhutter and Schaefer, 2014, David, 2008,

Chen et al., 2009, Bhamra et al., 2010]. Other authors have found that the credit

spread puzzle is robust to heterogeneity, in the sense that even after account-

ing for heterogeneity, the size of default risk in corporate spreads is tiny [Jones

et al., 1984, Leland, 2004, Huang and Huang, 2012, Elton et al., 2001].

The goal of this paper is to bring some consensus on the role of heterogeneity

in the credit spread puzzle. To achieve this goal we must adopt a framework

where the impact of heterogeneity on the default risk size can be isolated un-

ambiguously. There are two ways that heterogeneity can be introduced in the

performance test of structural models. The first approach is to extend pure

structural models by explicitly incorporating heterogeneity in the model struc-

ture. It is the approach pursued by David [2008], Chen et al. [2009], Bhamra

et al. [2010]. The other approach is to apply the model on individual bonds, then

compare average model spreads to average historical spreads for each category.

It is the approach adopted by Jones et al. [1984], Elton et al. [2001], Huang

and Huang [2012], Feldhutter and Schaefer [2014]. While the focus of studies

adopting the first approach is to develop new structural models where there

is no puzzle, that of studies adopting the second approach is to test existing

models without modifying them.
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The problem with the first approach is that the structure of the original

structural model is modified when heterogeneity is added. The resulting models

are complex and understanding how heterogeneity operates in those models

becomes a puzzle in a puzzle. The perfect illustration of the puzzle in a puzzle

is the fact that David [2008] found that heterogeneity leads to higher spreads

because of the convexity of structural models while Chen et al. [2009] argued

that the higher spreads obtained by David [2008] are not due to convexity but

to time varying Sharpe ratios. The puzzling fact is that structural models are

convex, hence it seems natural to observe a convexity effect. To avoid these

unnecessary complications we adopt the second approach. The advantage of

this approach is that the structure of the model is preserved.

There are several issues with previous studies adopting the second approach.

The goal of Jones et al. [1984] was to test the Merton [1974] model but they

ended up testing an extension of the original model for callable bonds. Their

work failed to convince because of an unnecessary anti-dilution assumption in

their extension which causes debt value not to increase monotonically with asset

value. Elton et al. [2001] did not test structural models of default. They tested

the Nelson and Siegel [1987] yield curve model with which they captured the

expected loss component of spreads by assuming that investors are risk-neutral.

But this expected loss is different from the spread predicted by a structural

model because in the structural modeling framework investors are not risk neu-

tral. Huang and Huang [2012] tested structural models but their main discussion

was based on the assumption of homogeneity of rating categories. In an attempt

to address the heterogeneity issue, they studied the robustness of their results

when some form of heterogeneity is introduced in the data. The problem is that

they did not consider the full distribution of fundamentals inside the rating cat-

egories. For the Aa category for instance, they assumed that half of the sample

have a lower average of 17.2% ratio and the other half have 25.2%. Not only the

full distribution is not reflected by this extreme simplification of heterogeneity,
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but the implied range of leverage is only 8% which is much smaller than what

we observe in the data. Feldhutter and Schaefer [2014] also tested structural

models using the second approach but they did not calibrate the average model

default rates to historical default rates. This calibration is essential for two rea-

sons. First, individual default rates do not need to match the historical average

but the average of these individual default rates should match the historical

average. Second, whether rating categories are heterogeneous or not, without

calibration to historical default experience, there is no puzzle. It is known that

structural models can generate high enough spreads. The puzzle is that they

cannot generate those high spreads when they are constrained to fit historical

default rates.

In the present study we embrace all these issues. We test pure structural

models of default, we estimate and consider the full distribution of fundamen-

tals inside rating categories and we calibrate the average of individual default

rates to historical default rates. Our evidences are based on a sample of daily

data on 1286 firms for a total of 2735873 firm-days from December 26, 1984 to

December 31, 2013. To our knowledge, this is the longest dataset (in terms of

period covered) ever used for this type of study. Our conclusions were subjected

to several robustness checks regarding the key constants of our study such as

historical default rates, recovery rates, the calibration procedure, the period of

study and the considered structural model. Our findings are the following.

Rating categories are highly heterogeneous. The range of dispersion is much

larger than that considered in previous studies such as those of Huang and

Huang [2012] and Leland [2004]. The BBB category appears to be the most

heterogeneous one. Overall, high grade rating categories are less heterogeneous

than low quality rating categories. The categories are highly overlapping. For

instance, many BBB rated firms have lower business risks than AA rated firms

and many B rated firms are less levered than BBB firms.

When heterogeneity is accounted for, without the calibration, the size of
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default risk in spreads is large, just as Feldhutter and Schaefer [2014] have found.

However, once default rates are calibrated, we find default risk sizes pretty much

in the same range as Huang and Huang [2012], even after accounting for the

large dispersions, skewnesses and kurtoses in rating categories.

We discuss the convexity puzzle: Is there any convexity effect or not due to

heterogeneity of rating categories? We show that the existence of the convexity

bias depends on the choice of typical firm. If the typical firm is the statistical

average firm, then there is a convexity bias, though its size is small for high

quality bonds. If the typical firm is not the statistical average firm then there

is not necessarily a convexity bias. The convexity puzzle arises because in some

studies one assumes that the typical firm is the statistical average firm while

in others the typical firm is carefully chosen by economic and calibration argu-

ments. In the latter case, the bias due to heterogeneity can be even negative.

A negative sign of the bias is not a concavity effect, it simply reflects the fact

that the average spread is smaller than the spread of the typical firm.

Our findings have important implications for credit risk modeling. First,

the credit spread puzzle is not a statistical artifact due to the heterogeneity of

rating categories. The problem seems to come from the type of risk adjustment

that is implied by pure structural models of default. Second, the development

of new structural models where one accounts for the comovements between the

value of the default option and macroeconomic fluctuations on one hand and the

comovements between the value of the default option and market liquidity con-

ditions must be encouraged. Third, assuming homogeneity of rating categories

can be judicious when testing structural models, provided that the typical firm

is carefully calibrated.

The remainder of the paper is organized as follow. In section 2, we discuss

the methodology of our analysis. First, we clarify what we mean by heterogene-

ity of rating categories and how we measure it. Second we discuss the issue of

calibration to historical default rates and the measure of the bias due to hetero-

5



geneity. In section 3, we present details about the construction of our dataset,

we provide some summary statistics and we study the heterogeneity of the rat-

ing categories. Section 4 presents the measures of the size of default risk in

presence of heterogeneity, and discusses the issues related to the convexity bias.

In section 5 we detail the robustness checks that we have performed. Section 6

presents further discussion of our results and section 7 concludes.

2 Methodology

2.1 Measure of heterogeneity

We measure heterogeneity by estimating the distribution of main firm funda-

mentals inside rating categories. We deliberately focus on the following funda-

mentals: asset volatility, leverage or equivalently solvency ratio, asset drift and

recovery rates. We chose these fundamentals first because they are the com-

mon denominator of all structural models of credit risk. Second, our goal is to

study the impact of this heterogeneity on the empirical test of a Merton Model

with bankruptcy costs and these fundamentals are those required by the Merton

Model (See appendix A for details on the Merton Model). After estimating a

distribution, we are interested in its dispersion, its skewness and its kurtosis.

These statistics give as an overall picture of how heterogeneous the rating cate-

gories are. In addition to the heterogeneity of each rating category, we are also

interested in their overlap. Overlapping distributions across rating categories

mean that these rating categories share common values of fundamentals. For

instance it is common to assume that an asset volatility of 21% is typical to

AAA rated firm. This assumption would come under question if we find that a

significant proportion of B rated firms also have an asset volatility of 21%.

It is also possible to measure heterogeneity in rating categories by measuring

heterogeneity in historical default rates and spreads. For instance, Longstaff and
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Schwartz [1995] showed that spreads are heterogeneous across economic sectors.

Proceeding this way would be interesting if we were interested in measuring the

impact of heterogeneity of rating categories on empirical estimates of spreads

and default rates. But this is not the goal of the current paper. Our goal

is to study the impact of heterogeneity of the inputs of structural models on

the outputs of structural models. Besides, it would be very surprising if firm

fundamentals were heterogeneous inside rating categories but spreads are not.

Estimation of the fundamentals is standard (See Appendix B). This paper

is not the first to estimate distributions of fundamentals but it is the first to do

so for each rating category, using daily data over the period 1983 to 2013, and

using the standard estimation procedure of fundamentals. This work is more

importantly the first to emphasize the overlap between distributions. Elkamhi

et al. [2012] estimated the fundamentals of the Leland and Toft [1996] model

including asset volatility, distance to default, default boundary and total debt

and found a large dispersion in their sample of firm-quarters covering the pe-

riod 1970-2007. However, they did not compute the distribution inside rating

categories. Bhamra et al. [2010] estimated the distribution of leverage ratios

for a sample of BBB firms over the period 1997 and 2004 (see their figure 1)

and found a large dispersion and a positive skewness. Chen et al. [2009] found

that the average leverage ratio for Baa rated firms was time varying over the

period 1975-1998 (see their figure 1). David [2008] also presented some em-

pirical evidence of time varying leverage ratios for the average Baa rated firm

using data from 1975 to 2001 (see their figure 1). Schaefer and Strebulaev

[2008] estimated the distribution of asset volatility and leverage inside rating

categories using data covering the period 1996-2006 but found rather low dis-

persions. Interestingly, though they do not mention it, their table 7 suggests

that the distributions of leverage and asset volatilities are highly overlapping.

They found that average asset volatility was in the range 21-23% for all rating

categories with standard deviations ranging from 5% to 8%. It is noteworthy
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that their estimation procedure is not standard. Feldhutter and Schaefer [2014]

estimated the distribution of fundamentals inside rating categories. But their

estimates are based on industrial bonds only and their samples covers the very

recent period 2002-2012 only. They also made the problematic assumption that

market value of assets is equal to book value of debt plus market value of equity.

2.2 Heterogeneity bias and calibration to historical de-

fault rates

2.2.1 Should we calibrate structural models to historical default

rates?

An issue that deserves special attention when dealing with the credit spread

puzzle is the calibration to historical default rates. Structural models yield

three main outputs: the spread, the risk-adjusted default rate, and the objective

default rate. Should we require that the model objective default rate matches

its historical counterpart? We might be tempted to answer no by invoking the

following popular argument. For pricing purposes, it is the risk-adjusted default

rates that matters and for risk management purposes it is the objective default

rate that matters (see for instance Hull [2012]). We would then conclude that

we should not care about historical default rates because we would like to test

the ability of structural models to price securities.

There is nothing fundamentally wrong with this argument except that the

credit spread puzzle is neither a pure pricing problem nor a pure risk manage-

ment problem. It is an Economics problem which involves both pricing and risk

management. It is about explaining the observed spreads on corporate bonds.

Since Economics rests on empirical observations, it is only natural to require

that structural models match empirical default rates when attempting to ex-

plain the credit spread puzzle. That’s when the dilemma arises. Structural

models seem unable to generate spreads as high as those observed empirically

8



once they are forced to generate objective default rates as low as those observed

empirically. This is the credit spread puzzle as defined by Huang and Huang

[2012]. The credit spread puzzle is therefore, by definition, closely related to the

calibration to historical default rates. No calibration, no puzzle. As a result,

any paper dealing with the puzzle should calibrate the model objective default

rates to historical default rates.

In a recent paper about the credit spread puzzle, Feldhutter and Schaefer

[2014] found that the puzzle might be a myth. This should surprise noone since

they did not calibrate their structural models to historical default rates. But,

they justified their choice not to calibrate by the uncertainty about the true av-

erage default rates. Obviously, if historical default rates are biased estimates of

the true default rate then it does not make sense to rely on them for calibration

purposes. The authors argued that ex-post default rates can be significantly dif-

ferent from ex-ante default rates due to systematic risk in the economy. Thus,

the true default rate could be higher or lower than the realized default rate. The

question is that why would a rational investor assume that the true default rate

is higher than the realized default rate, ignoring it could be lower? We believe

that, in the wake of uncertainty, the realized default rate which is at mid-way

between conservative and exaggerated estimates is a reasonable and compromis-

ing choice. Another problem with their argument is that the large uncertainty

about the true default rate arises only when they introduce systematic risk in

their simulated economy, the size of which is controlled by a correlation param-

eter. They considered a range of correlation parameters without any empirical

backing. The considered range might be much higher than actual correlations.

Without empirical evidence on the actual size of this systematic risk, the uncer-

tainty about the true average default rates might have been overstated. Finally

their conclusions are based on a simulated economy and thus cannot claim gen-

erality. Later, in our analysis, we show that even when one accounts for the

uncertainty over the true default rate estimates, corporate credit spreads are
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still a puzzle.

2.2.2 The standard calibration approach

Let’s denote by ΦT the objective default rate function of a particular structural

model for a given horizon T . Let’s denote by ΨT the spread function of the

same structural model for a given horizon T . For the Merton Model, ΦT is a

function of asset volatility σ, asset drift µ, and leverage λ. ΨT is a function of

asset volatility σ, leverage λ, recovery rate ρ and the risk free rate r. For the

exact expressions of the functions ΦT and ΨT in the Merton model, refer to

appendix A.

The standard way of gauging the performance of a structural model is the

typical firm based approach. For instance, the average historical spread for

BBB rated firms is known. The idea is to consider values of σ, ρ and λ that are

typical to BBB firms and show that ΨT (λ, σ, ρ, r) is close to the observed BBB

spread. There is no standard way of defining the typical firm, in some studies,

one uses statistical averages, in others one uses statistical medians, in others

one uses plausible values backed by some economic intuition.

The observation of Huang and Huang [2012] is that it is possible to find

values of σ, ρ and λ that make ΨT (λ, σ, ρ, r) sufficiently high but this might be

implying a too high ΦT (λ, σ, µ) for plausible values of µ. To prove their point,

they calibrated ΦT (λ, σ, µ) to its historical level before comparing ΨT (λ, σ, ρ, r)

to its historical counterpart. The calibration consists of the following. Consider

a given rating category. Denote the historical average leverage, asset volatility,

recovery rate, asset drift, default rate and spread for this rating category by

λ, σ, ρ, µ, φT , ψT respectively. Calibrating to historical default rates consists of

setting the asset volatility to the value of σ which solves the following equation

ΦT
(
λ, σ∗, µ

)
= φT .
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In practice because ΦT
(
λ, σ, µ

)
is very low, one finds that σ∗ > σ.

The size of default risk explained by the model is then computed as the ratio

ΨT

(
λ, σ∗, ρ, r

)
ψT

Huang and Huang [2012] found that this gauge ratio is typically low.

2.2.3 The heterogeneity issue

Since φ is an average default rate, the correct calibration equation is to require

that

ΦT = φT ,

where ΦT is the average of individual default rates predicted by the model for

firms inside the rating category.

ΦT =
1

n

n∑
i=1

ΦT (λi, σi, µi) .

And the correct gauging ratio is then

ΨT

ψT
,

where

ΨT =
1

n

n∑
i=1

ΨT (λi, σi, ρi, r) ,

n is the sample size. Unless the rating category is homogeneous, due to the

non-linearity of ΦT ,

ΦT 6= ΦT
(
λ, σ, µ

)
.
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We also have that:

ΨT 6= ΨT

(
λ, σ∗, ρ, r

)
,

and this second inequality has nothing to do with the non-linearity of the spread

function ΨT because it would hold even if ΨT were linear. The reason is that

σ∗ is different from σ.

Accounting for heterogeneity might therefore change the conclusions of Huang

and Huang [2012]. The hope is that we might be able to calibrate ΦT to φT

and still have
ΨT

ψT
>

ΨT

(
λ, σ∗, ρ, r

)
ψT

.

2.2.4 Measuring the heterogeneity bias

Some of the authors that discussed the issue of heterogeneity in empirical tests

of structural models argued that heterogeneity causes a bias because the spread

function is convex in its arguments [David, 2008, Feldhutter and Schaefer, 2014].

They define the convexity bias as:

ΨT −ΨT

(
λ, σ, ρ, r

)
.

Indeed, If ΨT is convex in (λ, σ, ρ) then:

ΨT

ψT
>

ΨT

(
λ, σ, ρ, r

)
ψT

.

This suggests that the bias due to heterogeneity is positive, i.e, if one takes

into consideration heterogeneity, one should find larger size of default risk than

when one ignores heterogeneity.

However, in many cases, the bias due to heterogeneity cannot be signed or

even sized using convexity arguments. This is because, as we explained earlier,

the typical firm is not always assumed to be the average firm. It is often carefully

calibrated by economic arguments and it changes from study to study and from
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model to model (see table 1). In the case of Huang and Huang [2012] for

instance, the typical firm is calibrated to match historical default experience.

The bias is this case is equal to:

ΨT −ΨT

(
λ, σ∗, ρ, r

)
.

Even if ΨT is convex, we cannot sign ΨT − ΨT

(
λ, σ∗, ρ, r

)
because σ∗ is

different from σ.

More generally we define the heterogeneity bias as:

ΨT −ΨT (λ∗, σ∗, ρ∗, r) ,

where the parameters (λ∗, σ∗, ρ∗) represent the fundamentals that are assumed

by a given researcher to be representative of a particular rating category. These

representative parameters are not necessarily the statistical average fundamen-

tals inside the considered rating category.

The heterogeneity bias can be negative depending on the choice of represen-

tative parameters. For instance keeping other parameters at their average, one

can easily solve for a leverage ratio λ̃, such that:

ΨT −ΨT

(
λ̃, σ, ρ, r

)
= 0.

If one chooses λ∗ > λ̃, then the bias becomes negative because, ΨT is strictly

increasing in λ. A negative bias, implies that accounting for heterogeneity would

actually reduce the size of default risk compared to the homogeneity case.
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3 Data and evidence of heterogeneity

3.1 Sources

Our sample covers all North American firms common to the databases COM-

PUSTAT and CRSP for which we have available data, excluding financial firms.

The sample includes daily data on 1286 firms for a total of 2735873 firm-days

from december 26, 1984 to december 31, 2013. To construct the database,

we retrieved quaterly data on debt in current liabilities (COMPUSTAT vari-

able name: dlcq) and long term debt (COMPUSTAT variable name: dlttq),

economic sector (COMPUSTAT variable name: spcseccd) from COMPUSTAT.

Regarding credit ratings, we used S&P credit rating on domestic long term

debt issuer (COMPUSTAT label: splticrm). The rating data is available at

monthly frequency. We also retrieved daily data on share closing price (CRSP

variable name PRC), daily number of outstanding shares (CRSP variable name:

SHROUT), share code (CRSP variable name: SHRCD ), and ex-dividend daily

returns (CRSP variable name: RETX) from CRSP. For the risk-free rate r, we

used the monthly data on one year Treasury Constant Maturity Rate obtained

from the Board of Governors of the Federal Reserve system.1

After first round cleaning (keeping common shares only, merging the dataset

and keeping observations with no missing data and strictly positive debt princi-

pal), the dataset consisted of 1536 firms from January 2, 1981 to December 31,

2013 for a total of 4794915 firm-days. Using this dataset, we estimated daily

firm asset values and asset volatilities using a rolling window of 4 years (See

appendix B for details on estimation procedure). We then excluded financial

firms and observations for which the estimation procedure did not converge.

Finally, to ensure that our analysis is not driven by extreme values and outliers,

we winsorized the data by eliminating the first and last percentiles. Table 2

shows the number of firms and observations in the final sample by rating and

1Available at http://research.stlouisfed.org/fred/data/irates/gs1 (H.15 Release).
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economic sector.

For historical default experience, we used historical default rate data over

the period 1981 to 2013 from the table 24 of Standard and Poors [2014]. The

historical default rate data is reprinted in table 3. Average recovery rates by

rating categories for senior unsecured bonds over the period 1982-2010 are re-

trieved from Exhibit 22 of Moody’s [2011]. Average recovery rates by economic

sector are retrieved from table 4 of Standard and Poors [2013]. Tables 4 and 5

show the recovery rates by rating and by economic sector respectively. Unfor-

tunately, we did not have data on average recovery rates by economic sectors

inside a given rating category, but this is exactly what we need. So we suggest a

procedure described in appendix B.3 to generate these recovery rates. This pro-

cedure allows us to assign different recovery rates to firms inside a given rating

category based on their economic sector, while ensuring that the average recov-

ery rate for the rating category exactly match its historical counterpart. The

obtained recovery rates are shown in table 6. Later in our robustness checks,

we consider an alternative way of introducing recovery rates which consists of

attributing random recovery rates to firms inside a given rating categories based

on a normal distribution with mean equal to the historical average recovery rate

for that rating category and a large coefficient of variation of 50%.

For historical spreads, we rely on the estimates of Huang and Huang [2012].

There are many reasons for this. First, we could have used data on actual

transaction prices from Trace database but these prices are available only from

2002. Using TRACE would mean throwing away almost two third of the period

that we cover. Second, historical average spreads in our study serve only as

benchmark for comparison purposes. Since many studies rely on the Huang

and Huang [2012] estimates, they seem to be a good choice of benchmark.

In particular, using our own estimates of the historical spreads as benchmark

would be problematic. It would be hard to tell whether our findings are due to a

different benchmark than Huang and Huang [2012] or to heterogeneity. Finally,
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we have performed some robustness checks regarding the major problem that

the use of the Huang and Huang [2012] estimates can pose. That problem arise

because the Huang and Huang [2012] estimates are based on a different period

than the one we consider in this study. In our robustness checks, we consider

the case where we reduce our sample to the same period used by Huang and

Huang [2012]. This did not change our conclusions.

3.2 Summary statistics and heterogeneity of rating cate-

gories

Tables 7 provides summary statistics of asset volatilities, asset drifts and lever-

age ratios by rating category. As one can see, there is substantial heterogeneity

inside rating categories. Consider the BBB category for instance. Asset volatili-

ties vary from 11.47% to 363% with an interquartile range of 22.64% to 36.16%.

Asset drifts vary from -28.19% to 220.93% with an interquartile range of 3.41%

to 19.50%. Leverage ranges from 4.88% to 1044.69% with an interquartile range

of 19.85% to 54.69%.

By all measures of heterogeneity for each fundamental, one can conclude

that there are important dissimilarities between firms inside rating categories.

Coefficients of variations are large suggesting that there is a sizable variation

around the means. The ranges are substantial even when we discard the first

and last percentiles. The interquartile ranges are also important indicating

that the observed large dispersions are not driven by extreme values. We also

observe substantial positive skewness and kurtosis in leverage, asset drift and

asset volatility. This shows that required risk premia can be substantially large

for some firms at some times and leverage ratios and asset volatilities can be

extremely high relative to the average. The largest skewnesses and kurtoses are

observed for BBB rated firms. Globally, heterogeneity is less important in high

quality rating categories than in low quality rating categories.
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Table 7 also shows that distributions are highly overlapping. We often think

of the median asset volatility of a given rating category to be exclusively typical

to firms inside that category. However, the overlapping distributions contradict

this common assertion. For instance, the median asset volatility for BBB rating

category is 28.68% in our sample. It is true that this asset volatility is typical

to BBB firms but it is not typical to BBB firms only. This value of 28.68% is

close to the center of the distribution of AA and A rating categories also. In

other words, a significant proportion of AA firms operate riskier businesses than

typical BBB firms. And a significant proportion of BBB rated businesses are

safer than AA rated firms.

Overlapping distribution may lead to a selection bias problem. To test

whether a model correctly predicts the spread for a firm with 28.68%2 asset

volatility, many authors would compare the model prediction at the 28.68%

asset volatility to the average spread observed for the BBB category (see for

instance Longstaff and Schwartz [1995], Leland [1994], Leland and Toft [1996],

He and Xiong [2012]). They would do so on the ground that 28.68% is typical

to BBB firms. However, because the distributions are overlapping, a signifi-

cant number of firms with different ratings than BBB also have asset volatilities

of 28.68%. Thus these firms should also be included in the sample used in the

test. Systematically restricting the sample to BBB firms may bias the test. One

cannot easily predict the sign and size of this bias because the unbiased sample

would consist of firms with lower ratings than BBB but also of firms with higher

ratings than BBB. Firms with lower credit quality would tend to increase the

average spread and default rate, while those with higher credit quality would

tend to decrease them. The net effects on spreads and default rates are hardly

predictable. Studying this selection bias would prove interesting in that respect.

However, this would require empirical observations of spreads and defaults for

firms with the same asset volatility but different ratings and this it is out of the

2This median asset volatility differ from study to study.
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scope of this paper.

The large dispersions, skewnesses, kurtoses and the highly overlapping dis-

tributions suggest that the assumption of homogeneity can be hardly justified.

However, would considering the whole distribution of fundamentals inside each

rating category change conclusions about the credit spread puzzle? We attempt

to answer this question in the next section.

4 The heterogeneity bias and the credit spread

puzzle

One has to appreciate the following findings on the heterogeneity bias in light

of the credit spread puzzle. This puzzle refers to the fact that many authors

have found that structural models of default, in particular the Merton Model,

are unable to fit the level of historical spreads for investment grade bonds. This

under-performance is more pronounced at the short end of the yield curve and

for high quality bonds. These studies have concluded that there must be other

factors at play such as liquidity risk and macro-economic risks. However, many

studies that have pioneered the credit spread puzzle have made the assumption

of homogeneity of rating categories. The main question is whether relaxing this

assumption would void the puzzle.

Some of the authors that have dealt with the heterogeneity issue have down-

played its magnitude. They include Leland [2004] who considered only a 10%

variation around average leverage and Huang and Huang [2012] who found no

sizable convexity effect after accounting for heterogeneity. Huang and Huang

[2012] considered only a rough approximation of the actual heterogeneity. For

the Aa category for instance, they assumed that half of the sample have a lower

average of 17.2% ratio and the other half have 25.2%. Not only the full distri-

bution is not reflected by this simplification, but the implied range is only 8%
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which is roughly 10 times lower than the actual range as estimated in the previ-

ous section. It is therefore of interest to study the impact of the full distribution

inside rating categories on the credit spread puzzle.

Others have found that heterogeneity helps in solving the puzzle but addi-

tional features have to be included in structural models for it to have a sizable

positive effect on the spreads. Among those studies we can cite David [2008],

Chen et al. [2009] and Bhamra et al. [2010]. David [2008] found that introducing

time varying leverage ratio in the Merton Model increases the BBB-spread by

59%. But the obtained spread of 79 basis points is still far from the historical

average BBB spread which is around 158 basis points. To get a spread of around

106 basis points a stochastic asset volatility combined with some signaling ef-

fect of inflation is needed. Chen et al. [2009] found that if the Merton Model

is calibrated to match historical default experience and sharpe ratios, then ig-

noring heterogeneity in solvency ratios would actually increase the spreads by

a few basis points. To get higher spreads Chen et al. [2009] introduced a time-

varying risk premium in the model by means of a habit persistence pricing

kernel. Bhamra et al. [2010] found that heterogeneity in the BBB sample helps

calibrate their model to historical default rates while keeping the spreads high.

However, they had to incorporate in their model an Epstein-Zin utility function

with intertemporal macro-economic risk.

Our approach to capturing the effect of heterogeneity on the performance of

the Merton Model is quite different from the previous studies. On a daily basis,

we price different bonds using the Merton Model. We do not introduce any time-

varying macroeconomic conditions or changing price of risk in the pricing model.

It is really the basic Merton model. We compute the spread implied by the

Merton model for each of these observations and compute the average of these

spreads rating wise. It is this model average spread that should be compared to

the historical average spread and it is what we do. When the typical firm is the

statistical average firm, the difference between our model average spread and
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the spread for the typical firm would reflect a convexity effect just like the one

highlighted by David [2008]. The difference with David [2008] though is that

we do not incorporate time-varying solvency ratios in the Merton model, and

we do not claim that investors, learning about the macro-economic condition

through the signaling effect of inflation, demand any additional compensation

for time-varying solvency ratios.

Feldhutter and Schaefer [2014] also adopts our approach but their measure

of heterogeneity bias is upward biased. They made the assumption that all the

parameters of the typical firm are the statistical averages of the considered rat-

ing category. As our table 1 shows, the typical firm is not always the statistical

average firm, especially in the paper of Huang and Huang [2012] where the typ-

ical firm is calibrated to historical default rates. To measure the true bias due

to heterogeneity in the work of Huang and Huang [2012], we need to calibrate

the typical firm to the historical default rate before measuring the bias. Second,

Feldhutter and Schaefer [2014] did not ensure that the average physical default

rate generated by their model matches the historical average default rate. Not

surprisingly, they found that the convexity bias is very large and that the credit

spread is highly likely just a myth. To isolate the true impact of heterogeneity,

we must make sure that in both the homogeneity and heterogeneity cases, the

model average default rate exactly matches the historical default rates. We ex-

pect these calibrations to reduce the bias due to heterogeneity and eventually

make it negative. Finally, contrarily to us, they paid no attention to the hetero-

geneity in recovery rates. We have introduced heterogeneity in recovery rates

across economic sectors as detailed in appendix B. We are unable to predict

however what the effect of the heterogeneity in recovery rates would be, so we

let the data decide.

We now present our empirical measures of the size of default risk and the

heterogeneity bias. As explained in section 2.2.4, we distinguish between the

convexity bias and the heterogeneity bias. In the strict sense, convexity bias
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is a particular case of heterogeneity bias where one assumes that the typical

firm is the average firm. An the bias in the case of the paper of Huang and

Huang [2012] is also a particular of heterogeneity bias where the typical firm

is calibrated to match historical default rates. We refer to this second bias as

the heterogeneity bias, because it is the one that really matters for the credit

spread puzzle.

4.1 Size of default risk

Table 8 compares the default sizes with and without calibration. When model

default rates are not calibrated to historical default rates, default sizes are large

except for the AA and AAA rated bonds (see panel A of table 8). In particular,

there seems to be no credit spread puzzle for BBB rated bonds. The model

generates average BBB spreads that are 36% larger than historical spreads at

the 4 year horizon and that are only 8% less than historical spreads at the

10 year horizon. The puzzle appears to be also less severe for A rated bonds.

The model explains 55.4% of the historical A spreads at the 4 year horizon and

45.4% of the historical A spreads at the 10 year horizon. In the homogeneity

case, Huang and Huang [2012] estimated the default sizes for the A spreads to

be only 10.3% and 19% respectively at the 4 year and the 10 year horizons.

For the default sizes without calibration to be satisfactory, the corresponding

model physical default rates must match their empirical counterpart. Table 9

compares the average of individual default rates predicted by the uncalibrated

model to the historical average. Except for the AAA category at the 4 year

horizon, the model physical default rates are much larger than the historical

averages. For the BBB category, the model predicts default rates that 6.5 times

larger than historical default rates at the 4 year horizon, and 3.6 times larger

at the 10 year horizon. For the A category, the model predicts default rates

that 6.4 times larger than historical default rates at the 4 year horizon, and
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4.1 times larger at the 10 year horizon. Thus, without calibration to historical

default rates, spreads are large but the corresponding default rates are too high.

We now calibrate the model to historical default rates as explained in ap-

pendix B.2. The calibration essentially consists of adjusting individual leverages

to the level imposed by historical default rates. In practice, the amount of debt

due at a given maturity is not known but it is what matters in the Merton

model. The philosophy of the calibration is to let historical default rates decide

the amount of the debt required at a given maturity. Later in the robustness

checks, we show that alternative calibration approaches do not change our con-

clusions. The calibrated leverages are shown in table 10. Without surprise, the

calibrated leverage ratios are much smaller than the actual total leverage ratios.

For the BBB category, the actual average leverage is 40.1%, but the leverage

that justifies the historically observed 1.53% default rate at the 4 year horizon

is 14.14% and the leverage that justifies the historically observed 4.33% default

rate at the 10 year horizon is 10.43%. For the A category, the actual average

leverage is 26.44%, but the leverage that justifies the historically observed 0.43%

default rate at the 4 year horizon is 12.95% and the leverage that justifies the

historically observed 1.59% default rate at the 10 year horizon is 9.27%.

Once the model is calibrated, it can explain only a small fraction of the

observed spreads (see panel B of table 8). The model now explains only 39% of

BBB spreads at the 4 year horizon compared to 136% without the calibration.

At the 10 year horizon, it now explains only 34% of the observed BBB spreads

compared to 91.8% without the calibration. For A bonds, the share of the

spreads explained by default risk is brought down from 55.4% to 11% at the

4 year horizon and from 45.4% to 11% at the 10 year horizon. For very high

quality bonds i.e AA and AAA bonds, the model explains only a tiny fraction

of the spreads with or without calibration. This is less of a puzzle because

these bonds are very safe and one would not expect credit risk to explain their

prices. These findings show that even after accounting for heterogeneity, there
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is a credit spread puzzle once the model is calibrated to historical default rates.

In the rest of this paper, the model is calibrated to historical default rates.

4.2 The convexity bias issue

We now turn to the convexity bias issue. To examine the size of this bias, we

must assume, by definition, that the typical firm is the statistical average firm,

i.e, the firm whose fundamentals are the average fundamentals observed the

rating category of interest. Table 11 shows the term structure of the convexity

bias in basis points by rating category. Panel A assumes homogeneity of recovery

rates while panel B relaxes this assumption by introducing heterogeneity in

recovery rates across economic sectors. The bias ranges from 0 basis points for

one-year and 2-year AAA-rated bonds to 362 basis points for 1-year B-rated

bonds. Overall, when one uses the average firm as typical firm, there is a

convexity bias especially at medium and long horizons and for low grade bonds.

The bias is larger for junk bonds than for investment grade bonds. The bias

is typically around 5 basis points for high quality bonds and typically above

100 basis points for junk bonds. For investment grade bonds, the bias is larger

at long maturities than at short maturities. For low quality bonds, the bias is

larger at short maturities than at long maturities. For BBB-rated bonds the

bias is no larger than 59 basis points.

It is striking that heterogeneity in recovery rates has no impact on the size

of the convexity bias. Introducing heterogeneity in recovery rates either does

not change the convexity bias or increases the convexity bias by only 1 basis

points. An exception is the case of B-rated bonds at the 4 year maturity where

heterogeneity in recovery rates actually reduced the convexity bias by 1 basis

points.

These results show that when the typical firm is the average firm, there is a

convexity bias, the size of which can be relatively important, especially for junk
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bonds.

However, the typical firm is not always the statistical firm. In the bench-

mark paper of Huang and Huang [2012], the asset volatility of the typical firm is

carefully calibrated to match historical default rates. Huang and Huang [2012]

did not actually consider the Merton model in their paper but their calibration

procedure can be roughly replicated for the Merton Model. Essentially, it con-

sists at calibrating the asset volatility while fixing the other fundamentals of the

typical firm at the rating average. If there is a bias attributable to heterogeneity

in this procedure, it should be reflected in the difference between the calibrated

model average spread and the spread at the calibrated average. The convexity

bias does not fairly represent the heterogeneity bias because it relies on an asset

volatility which is not calibrated to historical default rates. Because of that, we

expect the veritable heterogeneity bias to be smaller than the convexity bias, if

not negative. Indeed, the model default rate for the average firm is generally

smaller than the historical average. Therefore, the calibration to historical de-

fault rates would require a higher asset volatility. This in turn would generate

higher spreads for the typical firm and a lower bias.

Panels A and B of table 12 show our measure of the heterogeneity bias

without and with heterogeneous recovery rates. As in the convexity bias case,

heterogeneity in recovery rates has virtually no impact on the size of the bias.

More importantly, as predicted, the heterogeneity bias is much smaller than

the convexity bias and it is negative in most cases. The only exception is the

Below-B category where the bias is still large. At the one year horizon, except

for the A rating category, the size of the bias is still positive although it is

reduced. For the BBB rating category, the bias is reduced but still positive at

short horizons. The reason of the reduced bias size is that the calibrated asset

volatility is higher than the average asset volatility. We show in table 13 the

calibrated asset volatilities compared to the average asset volatilities.

The negative heterogeneity biases do not mean that after accounting for
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heterogeneity the model spreads would be necessary smaller than those obtained

by Huang and Huang [2012]. They mean that had Huang and Huang [2012]

tested the Merton model using our calibrated typical firm, they would have

ended up with slightly higher default size than what they found in some cases.

This would mean an upward bias regarding the true default size.

In conclusion, if a study assumes homogeneity of rating categories and defines

the representative firm as the statistical average firm, then their model spread

will be downward biased, though the size of the bias will be almost zero for high

quality bonds. This bias can be correctly named a “convexity bias” because its

existence can be mathematically demonstrated by convexity arguments. How-

ever, if the study uses a representative firm which is not the average firm, then

there might be an heterogeneity bias but there is no ground to call the bias

“convexity bias” because its existence cannot be mathematically demonstrated

by convexity argument. There is no basis either to call the bias ’non-linearity

bias’ because even if structural models were linear, which is of course not the

case, the bias would exist. In the case of Huang and Huang [2012], our findings

show that the bias due to heterogeneity is actually negative in most cases.

5 Robustness checks

We now study the robustness of our findings with respect to some key assump-

tions. We consider the following cases:

• Case 1: Average default probability is increased by 50%.

• Case 2: Heterogeneity in recovery rates is increased by attributing trun-

cated normally distributed random recovery rates to firms inside rating

categories while still matching average historical recovery rates.

• Case 3: The model default rate for each individual bond is calibrated to

match the historical default rate for the corresponding rating category and
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horizon.

• Case 4: Leverages are fixed to our sample average and asset volatilities

are adjusted to match historical default rates.

• Case 5: Leverages are fixed to the same average as Huang and Huang

[2012] and asset volatilities are adjusted to match historical default rates.

• Case 6: The sample period is restricted to 1985-1998, the same as Huang

and Huang [2012].

• Case 7: An advanced structural model: Leland and Toft [1996] model.

For clarity and space parsimony, we present for each case only the size of

default risk explained by the model after accounting for heterogeneity. We do

not present the convexity biases and heterogeneity biases for each case. The

results are shown in table 14. The base case scenario is the one used in the

earlier part of our study and is described in details in appendix B.

5.1 Sensitivity to historical default rates

A key parameter of our analysis is the average historical default rate. This

parameter is not measured with certainty. Keenan et al. [1999] provided some

estimates of the volatility of one year default rates and ten year default rates

by rating categories. At the one year horizon, the volatility of default rates

range from 0% for AAA bonds to 0.28% for BBB bonds and 4.99% for B rated

bonds. At the 10 year horizon, the volatility of default rates range from 1.93%

for AAA bonds to 10.23% for BBB bonds and 15.94% for B rated bonds. Over-

all the volatility of default rates tends to decrease with credit quality and to

increase with time to maturity. The authors examined cohorts of bonds from

1970 to 1998 which makes roughly 28 cohorts. Assuming independence of the

cohorts, the volatility of each sample average default rate could be taken to

the volatility of the sample divided by the square root of the sample size. This
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yields an estimate of coefficients of variation of average default rates no greater

than 25% for each rating category. These estimates show that the uncertainty

about average default rates can be substantial. The true coefficient of variation

could be even larger than 25% due to correlations between the cohorts. It is

therefore possible that the puzzle is due to larger true default rates than what

the historical averages. To control for this possibility, we consider a worst sce-

nario case, and increase the average historical default probabilities by 50% and

measure the bias-free default sizes. The results are shown in column labeled

“case 1” of table 14. The obtained default sizes are larger as one could have

expected. Compared to the Huang and Huang [2012] estimates, the default size

for BBB bonds have more than doubled at the 4 year horizon and is close to

50%. However, compared to our base case there is no substantial increase that

could challenge our previous conclusions. Default sizes for investment grade

bonds are still small.

5.2 Recovery rates

It could be surprising that heterogeneity in recovery rates have no sizable im-

pact. This might be due to the way we generated the heterogeneity in recovery

rates. We used a highly stylized approach to assign different recovery rates

to firms inside the same rating category according to their economic sectors,

while ensuring that at each maturity the average recovery rate matches empiri-

cal observations. One might argue that this approach does not generate enough

heterogeneity of recovery rates inside rating categories. The ideal would have

been to have a specific recovery rate for each individual bond. However, it is

impossible to observe recovery rates for individual firms while they have not

defaulted. One must rely on categorical level measures which are provided by

rating agencies. There exists data on average recovery rates by year but we

did not attempt to use them because what matters in our simple Merton model
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with bankruptcy costs is the expected recovery rate at maturity. It is not the

recovery rate the year of pricing. At the pricing moment, we know the year at

which the bond matures but we do not yet know the recovery rate for that year.

With these data constraints, our best guest for the recovery rate of a particular

firm is the historical average default rate observed for the corresponding rating

category, maturity and economic sector.

However, what if the actual recovery rates were more variable inside rating

categories than our best guess implies? As an attempt to deal with this issue,

we consider larger heterogeneity in recovery rates than in our base case. We as-

sume that for each rating category and maturity, recovery rates follow a normal

distribution with mean equal to the historical average for that rating category

and maturity. We arbitrarily consider a coefficient of variation of 50%. Recov-

ery rates for individual firms are drawn from this distribution but are truncated

at the maximum of 99% and a minimum of 1%. This procedure leads to much

more heterogeneity in recovery than in our base case. Even inside the same

economic sector, for the same rating and horizon, firms have different recovery

rates. The assumed range of dispersion of recovery rates inside rating categories

is now 98% while it was roughly 30% in our base case.

The new default sizes are displayed in the column labeled “case 2” of table

14. One can see that there is no marked difference from our base case findings.

5.3 Alternative calibration approaches

We have calibrated the leverage ratios in our analysis so that the model average

default rates for each rating category match their corresponding historical coun-

terpart. This calibration procedure have two particularities. First we do not

force individual default model rates to match historical default rates, we only

require that average model default rates match historical default rates. The ba-

sis of this approach is that in presence of heterogeneity, historical default rates
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are not individual default rates, they are average default rates. The drawback

however with this approach is that we impose a uniform adjustment to leverage

ratios. What if the adjustment needed to be firm specific? Second, we calibrate

leverage ratios instead of asset volatilities. We obtained lower leverage ratios

than previous studies. These lower leverage ratios reflects the reality that at a

given maturity, the firm will default only if it misses the payments due at that

time. These payments are match lower than the overall principal. One might

argue that our earlier findings are due to this atypical calibration procedure and

to our low leverages.

To address these concerns, we consider three alternative calibration proce-

dures. The first alternative is to force the model default rate of each individual

firm to match historical levels, thereby allowing firm specific adjustments. The

second alternative is to calibrate the asset volatility instead of leverage, in such

a way that leverage is kept at our sample average. The third alternative is to

consider the same average leverage ratios as Huang and Huang [2012] and cali-

brate asset volatilities to match historical default rates. The results are shown

in columns labeled “case 3”, “case 4” and “case 5” of table 14. The results

speak for themselves. None of these alternative procedures have substantially

increased the explained default size for investment grade bonds. In most cases,

the model default size is even lower than in the base case. We conclude that

our findings are neither due to our calibration approach, nor to the difference

between our sample average leverage and the Huang and Huang [2012] average

leverage.

5.4 Period of study

Our findings are based on the period 1984 to 2013. However, we compare our

model spreads with historical spreads estimated by Huang and Huang [2012].

These historical estimates are based on the period 1973-1993 for 10 year in-
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vestment grade bonds and on the period 1985-1998 for 4 year investment grade

bonds. Despite the fact that there is little disagreement between different mea-

sures of historical spreads (see table 4 of Bhamra et al. [2010]), it could be the

case that this difference in time frames bias our measured default sizes down-

ward. To account for this possibility, we reconducted our study over the period

1985-1998, to be consistent for the time frame for 4 year investment grade bonds.

The results are shown in the column labeled “case 6” of table 14. The new de-

fault sizes are smaller for high quality bonds and are larger for lower quality

bonds than in the base case. Our conclusion remains the same as in the base

case though. Heterogeneity alone cannot explain the credit spread puzzle.

5.5 Is it specific to the Merton Model?

Would our findings change if we consider more elaborated structural models?

We consider here the Leland and Toft [1996] model, which is one of the most

successful extensions of the Merton Model. Some particularities of this model

relatively to the Merton Model are the following. Default occurs endogenously

once the firm value falls below an optimally determined level. There are cor-

porate taxes. The firm continuously pay a coupon and replaces maturing debt

with new debt at par. We leave the details about the model and its calibration

to appendix C. Results based on this advanced structural model are given in the

column labeled “case 7” of table 14. The calibrated spreads are even lower than

in our base case. This shows that our findings are not specific to the Merton

Model.

6 Further discussions

Many studies have attempted to determine the portion of the yield spread on

corporate bonds attributable to default risk. These studies could be traced back

to Jones et al. [1984] who used data on 27 firms on a monthly basis from Jan-
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uary 1975 through January 1981. They found that for investment grade bonds,

their extension of the Merton model to callable bonds is not an improvement

over a naive model which assumes that debt is risk free. Their findings failed

to convince mainly because their extension implied that debt value does not in-

crease monotonically with firm value. Our study does not suffer from the same

problem since what we test is really the basic Merton model. It is interesting

that we arrive roughly at the same conclusion as Jones et al. [1984] that the

Merton model has difficulty in pricing investment grade bonds.

6.1 Expected losses, taxes, market factors and liquidity

Another important work on the credit spread puzzle is that of Elton et al. [2001].

They found that a risk-neutral investor would require only a fraction of actual

spreads on investment grade bonds to be fully compensated for the risk of default

in a tax-free world. Part of the remainder of the observed spreads is due to the

tax differential between government bonds and corporate bonds. The coupons

on the former are tax free while the coupons on the later are subjected to both

state and federal taxes. They argued that the part unexplained by risk-neutral

default risk and tax premium is a risk premium which is related to market risk

factors of Fama and French [1992]. However, their work cannot be considered

as a full test of the structural modeling approach to credit risk measure. In

the structural modeling framework, investors are not risk-neutral. In the basic

Merton model, they require a constant risk adjustment to expected returns.

Since Elton et al. [2001] use historical default probabilities, what they measure

is only the expected loss component of the default risk. Based on their results,

we cannot conclude on the size of default risk explained by structural models.

In our approach, which is an extension of the approach of Huang and Huang

[2012], the constant default risk premia required in the Merton model as well as

the expected default loss are fully taken into consideration. We found that when
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the constant default risk premia is specified consistently with historical default

rates, the size of default risk predicted by structural models is considerably low.

We do not attempt to explain the remainder of the yield spreads. Previous

studies have shown known that the remainder is related to taxes, market risk,

liquidity risk and macroeconomic risks and liquidity risk [Chen, 2010, Longstaff

et al., 2005, Elton et al., 2001, Collin-Dufresne et al., 2001]. What we do find is

that this remainder is large, even when we account for heterogeneity of rating

categories.

6.2 Macro-structural models, convexity and time-varying

risk premia

Though our work is similar in spirit to that of Huang and Huang [2012], there

is a major difference in our two works. They ignored heterogeneity of rating

categories in the main part of their work. Later in their analysis, they studied

the impact of the heterogeneity on their results. But as we argued earlier, the

range of dispersion that they consider is small compared to the dispersion that

we observe in the data. The heart of our work is to study in details the impact of

full distribution of firms fundamentals inside rating categories on the measured

default sizes. Thus our work tests the robustness of the conclusions of Huang

and Huang [2012] to heterogeneity. David [2008] was amongst the firsts to show

that heterogeneity of rating categories must be considered in the discussion of

the credit spread puzzle. He argued that heterogeneity leads to a convexity bias

in the test of structural models. As we have shown, there is indeed a convexity

bias only if the typical firm is assumed to be the average firm, though its size

is tiny for high quality bonds. But in many studies the typical firm is not the

average firm. The parameters are carefully calibrated using various economic

arguments. We showed that when the typical firm is not the average firm, one

cannot sign the bias due to heterogeneity by convexity arguments. The bias can
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be even negative if the spread for the typical firm is significantly higher than the

average spread. Our empirical investigations have demonstrated that once the

asset volatility of the typical firm is calibrated to match historical default rates,

the heterogeneity bias becomes negative in many cases. Thus, we conclude that

the higher spreads obtained by David [2008] in their paper are not due to a

convexity effect. Using a different argument line, Chen et al. [2009] also arrived

at the same conclusion.

There are two ways of accounting for heterogeneity of rating categories. The

first approach is to extend pure structural models by incorporating into it time-

varying or cross-sectionally varying fundamentals (see David [2008], Chen et al.

[2009], Bhamra et al. [2010]). The second is to consider that pure structural

models must be tested on individual bonds. In this paper, it is this second

approach that we pursue. Technically, both approaches rely on the assumption

that it is the average model default rate of individual observations in a given

rating category that must be compared with historical spreads. This assumption

is less obvious in the first approach because the average default rate of future

individual observations in a particular rating category represents ex-ante the

expected default rate for a representative individual bond of that rating cate-

gory. The problem with the first approach is that the model has to be modified

and it can become puzzling to isolate the effect of heterogeneity from the effects

of the new assumptions introduced in the models. The debate over whether the

findings of David [2008] were indeed due to convexity or not is an illustration

of “the puzzle in the puzzle” created by the first approach. In the second ap-

proach that we adopt, the original structure is preserved so that one can easily

measure the impact of heterogeneity. The implications of our findings is that

in the macro-structural models of David [2008], Chen et al. [2009] and Bhamra

et al. [2010], it is not heterogeneity per se that leads to higher spreads. It is

the additional features of these models mainly the fact that there exist states of

the world where default risk can be very high and risk premia is also very high.
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Our findings therefore supports the development of macro-structural models ex-

ploring the impact of time varying risk premia and stochastic macro-economic

environments.

6.3 Assuming homogeneity might be warranted

A side implication of our work is that assuming homogeneity of rating categories

does not necessarily bias downward the performance of pure structural models.

If anything, this would most likely bias upward the tests. In the first part of the

paper we have shown that rating categories are highly heterogeneous and that

the distributions are highly overlapping from one category to the other. This

suggests that it is not correct to consider that a given value of asset volatility

or leverage or asset drift is typical or specific to a particular rating category.

However, our findings also imply that for test purposes only, given the com-

putational and modeling costs associated with introducing heterogeneity in the

tests of structural models, adopting the homogeneity assumption might be ju-

dicious, provided that the typical firm is carefully calibrated. If the typical firm

is the statistical average firm, there will be a systematic downward bias in the

tests due to convexity, especially for low quality bonds. In some studies where

one is concerned with the size of spread attributable to other factors such as

liquidity, an upward bias might be equally undesirable as a downward bias. In

such cases, it is advisable to consider the full consideration of fundamentals in

rating categories to avoid any upward or downward bias.

6.4 It is all about risk adjustment

What our research and previous works on the credit spread point out is that

there is something wrong with the type of risk-adjustment made in pure struc-

tural models. These models are based on the work of Black and Scholes [1973].

In the Black and Scholes [1973] derivation, a position in a call option can be
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perfectly hedged by a position in the underlying stock. The hedging argument is

that if the stock price falls, the call price also falls and the value of a portfolio in

both the stock and option with optimal weights will not change. What if due a

change of macro-economic conditions, the stock price remains constant but the

call price increases due to a greater risk of it being exercised? The portfolio is

no more a perfect hedge. In the Black and Scholes [1973] world such a scenario

cannot occur because changes in option value happen only because maturity is

closer or because the stock price has changed. In other words, in the Black and

Scholes [1973] and Merton [1974] framework, the systematic risk priced in bonds

comes only from the comovement between the firm asset value and the option

to default. The framework thus correctly adjusts for the fact that default risk

is substantial when asset value is low. However, the framework ignores other

sources of systematic risk such as macro-economic risk and liquidity. It ignores

that default risk can be substantial when market returns are low, even if asset

value is constant. By the same token, default risk can be substantial when liq-

uidity conditions deteriorates, even if asset value remains constant. That is also

ignored in the Black and Scholes [1973] and Merton [1974]. Our work therefore

encourages the development of new structural models where these additional

sources of systematic risk are taken into consideration.

7 conclusion

The rating through the cycle policy of rating agencies and the few number

of rating categories makes rating categories heterogeneous. Many studies have

found that accounting for that heterogeneity helps solve the credit spread puzzle.

Others have argued of the opposite. What exactly is the role of heterogeneity

in explaining corporate spreads? This is the question we sought to answer in

this paper.

Three ingredients are necessary to answer the question: the true extent of the
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heterogeneity inside rating category, the calibration of the model to historical

default experience in presence of heterogeneity and a methodology to clearly

single out the impact heterogeneity on the measured spreads. Previous authors

dealing with the issue have failed to deal with one or more of these aspects of

the question. The present study brings together these three ingredients in an

attempt to definitively answer the question.

We have found that asset volatilities, leverages, asset drifts and recovery

rates are highly dispersed inside rating categories with large skewnesses and

kurtoses. Furthermore, the distributions of these fundamentals are highly over-

lapping across rating categories. Notwithstanding this substantial heterogeneity,

the credit spread puzzle is not a statistical artifact due to the heterogeneity of

rating categories. After several robustness checks, we conclude that pure struc-

tural models can explain only a small fraction of observed spreads for investment

grade bonds.

The problem lies in the type of risk adjustment made in structural models.

When we do not require this risk adjustment to be consistent with historical

default rates, structural models perform well. However, once we constraint the

risk adjustment to reflect historical default rates, the model performs poorly for

investment grade bonds.

We have also shown that assuming homogeneity does not systematically bias

downward measured spreads through the so-called convexity effect. This only

happens when the typical firm is the statistical average firm. When the typical

firm is carefully calibrated with economic arguments, there is still a bias due to

heterogeneity but we found that this bias is negative. The negative sign is not

a concavity effect and it has nothing to do with the non-linearity of structural

model. It simply reflects the fact that the average spread is smaller than the

spread of the calibrated typical firm.

Overall, our findings support the development of structural models where

investors require compensation for other sources risk such as macroeconomic
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risks, market risks and liquidity risk. They also suggest that despite the het-

erogeneity of rating categories, assuming their homogeneity might be judicious

given the computational burden that might be associated with heterogeneity for

a large sample size.
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A The Merton model with Bankruptcy costs

The model of Merton [1974] relies on the following assumptions. The market

is frictionless: no taxes, no indivisibility problem, no transaction costs, no re-

strictions on short-selling. Securities are perfectly liquid. There exists a market

where one can lend and borrow at the same riskless rate. The Modigliani-Miller

theorem holds in such a way that the firm value is independent of the firm capital

structure. Trading takes place in continuous time. The riskless rate is constant

across all maturities. The firm value V follows a Gauss-Wiener Process:

dV = (µV − C) dt+ σV dz, (1)

where µ is the instantaneous rate of return of the firm value, C is the firm

instantaneous net payout to its stakeholders (interest payments + dividends), σ

is the instantaneous standard deviation of the firm value and dz is the standard

Gauss-Wiener process. In this tax free word, the firm value is equal to the value

of its assets.

Following Black and Scholes [1973], Merton [1974] used no arbitrage argu-

ments to show that the price of any security Y whose value could be written as

F (V, t) satisfies the following partial differential equation

1

2
σ2V 2FV V + (µV − C)FV + Ft = rF − Cy, (2)

where the subscripts denote partial derivatives and Cy is the instantaneous net

dollar payout to the security holder.

Consider now a firm with only two types of securities: equity and a zero-

coupon debt of principal B due at date T . The firm cannot issue any new

senior or equivalent debt, nor can it pay dividends or do share repurchases prior

to the maturity of the existing debt. In the event of default, the bondholders

immediately take over the company at no cost and the shareholders receive
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nothing. Thus C = Cy = 0, there is no default cost and the absolute priority

rule is respected. In the original version of the Merton Model there are no

bankruptcy costs. Here we introduce some bankruptcy costs in the form of a

recovery rate ρ in case of default. The equity price is given by

E = e−rTEQ
[
(VT −B)× 1{VT>B}

]
,

= V0Q
S (VT > B)−Be−rTQ (VT > B) ,

= V0N (d1 (λ))−Be−rTN (d2 (λ)) .

d1 (x) =
− ln (x) +

(
r + σ2

2

)
T

σ
√
T

,

d2 (x) =
− ln (x) +

(
r − σ2

2

)
T

σ
√
T

,

and λ =
B

V0
is the leverage ratio.

The bond price is given by :

F = e−rTEQ
[
B × 1{VT>B} + min (ρB, VT )× 1{VT<B}

]
,

= Be−rTQ (VT > B) + e−rTEQ
[
VT × 1{VT<ρB} + ρB × 1{ρB<VT<B}

]
,

= Be−rTN (d2 (λ)) + V0N (−d1 (ρλ)) + ρBe−rTQ (ρB < VT < B) ,

F = Be−rTN (d2 (λ)) + V0N (−d1 (ρλ)) + ρBe−rT (N (d2 (λ))−N (d2 (ρλ))) .

F

B
= e−rTN (d2 (λ)) +

V0

B
N (−d1 (ρλ)) + ρe−rT (N (d2 (λ))−N (d2 (ρλ))) .

The objective default rate is given by:
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ΦT (λ, σ, µ) = N

−− ln (λ) +
(
µ− σ2

2

)
T

σ
√
T

 .

The spread is given by

ΨT (λ, σ, ρ, r) = − 1

T
ln

(
F

B

)
− r

= − 1

T
ln

(
e−rTN (d2 (λ)) +

1

λ
N (−d1 (ρλ)) + ρe−rT (N (d2 (λ))−N (d2 (ρλ)))

)
− r.

B Computation of firm fundamentals

In this section, we discuss the calculation of firm fundamentals including lever-

age, asset value, asset volatility, asset drift and recovery rate.

B.1 Asset value, asset volatility and asset drift

A key input to structural models is the asset volatility which is not directly

observable. One could estimate it from the time series of market value of assets,

if such a times series were available. In the absence of taxes, the market value

of assets can be taken to the sum of the market value of equity and the market

value of debt. However, while market data on equity is available, only a small

portion of total debt is traded on the market. Thus, computing the market

value this way is not directly feasible. Several solutions to this problem exist in

the literature. The easiest solution would be to proxy the market value of debt

by its book value. The drawback to this solution is that market value of equity

is observed daily while book value of debt is at best observed quarterly. Another

solution suggested by Jones et al. [1984] is to assume that the market value of

non-traded debt is equal to the book value of non-traded debt scaled by the ratio

of book to market of traded debt. Implicit to this solution, is the assumption
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that the book to market ratio of traded debt and non-traded debt are similar.

However, there is no reason to believe that this assumption is true. Moreover,

to implement this solution one must be able to disentangle book value of traded

debt from book value of non traded debt. Such disentangled data is not readily

available. A third solution is to estimate separately equity return volatility using

time series of equity returns and debt return volatility using available data on

publicly traded debt. The estimate of the asset volatility in this third approach

would be a weighted average of the equity return volatility and the debt return

volatility3. The drawback of this approach is that the weights are often chosen

arbitrarily with no economic argument.

A fourth approach which relies on the Merton [1974] model exists. It consists

of solving a system of two equations as described in Crosbie and Bohn [2002]

for the implied volatility of asset returns. Indeed, the value of equity E is

E = V N (d1)−Be−rτN (d2) , (3)

and the volatility of equity returns σE is

σE = σEV
V

E
= σN (d1)

V

E
. (4)

If the equity value E, the equity volatility σE , the horizon T , the debt

principal B and the riskless rate r are known, one can solve simultaneously and

numerically equations (3) and (4) for the asset volatility σ and the asset value

V . In practice, one must first choose an horizon T . Here we use T = 4, in such

a way that the assumption that debt principal is equal to short term debt by

half long term debt is plausible. Second, the equity value E and the riskless rate

are observed on the market and historical return on equity is used to estimate

3Schaefer and Strebulaev [2008] proposed an extended version of the weighted average
approach where it is possible to take into consideration the correlation between bond returns
and equity returns.
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equity volatility σE .

According to Crosbie and Bohn [2002], the asset volatility obtained from the

simultaneous solution of equations (3) and (4) is not robust to changes in the

firm leverage. So they suggested an alternative complicated iterative procedure

that is better described by Bharath and Shumway [2008]. The procedure is the

following. One first guesses a value of σ. Equation (3) is then used to find

the corresponding V for every day of the previous four years. The resulting

asset returns are used to estimate a new asset volatility σ which becomes the

input of the next iteration. Bharath and Shumway [2008] suggested to use

σE
E

E+B as a starting value of σ. We adopt this iterative procedure to calculate

daily asset values and yearly asset volatilities. We assume that convergence is

achieved either when the norm of the difference between two consecutive vectors

of daily asset values is less than 0.001. Crosbie and Bohn [2002] argued that this

procedure converges in few iterations. In practice, in few cases, convergence may

be slow. To avoid infinite loops, we stop the iteration procedure if the number

of iterations exceeds 100, and we discard the corresponding observation. We

measure the firm drift by the annualized average daily asset returns calculated

from the above iterative procedure.

B.2 Leverage and calibration to historical default rates

Leverage is calculated as the ratio of debt principal to the initial asset value.

Many studies make the assumption that the debt principal is the same for every

maturity. This lead to the same leverage ratio for all considered horizons. This

hardly makes economic sense because only a small proportion of the debt is

due in short-term. The asset value needs only to exceed this short-term debt in

order to avoid default in the short term. If one assumes that the whole debt is

due in the short term, then one would overestimate the likelihood of a default in

the short term. In our study we consider four horizons 1, 2, 4 and 10 year. We
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do not know the exact proportion of the total debt that is due at each of these

maturities. We decided to recover this information from the historical default

rates. For each rating and maturity, we required that the debt principal due is

the amount of debt that would make the model average historical default rate

equal to the historical default rate. Our results are however independent of this

choice.

In practice, for each rating category and maturity, we solve the following

equation for x:

1

n

n∑
i=1

ΦT
(
λie
−x, σi, µi

)
= φT ,

which is equivalent to solving:

1

n

n∑
i=1

N

−− ln (λi) +
(
µi − σ2

i

2

)
T

σi
√
T

− x

σi
√
T

 = φT .

n is the number of observation in that rating category. The index i is for

individual observations in that rating category.

Thus our calibration procedure is similar in spirit to that of Moody’s KMV.

We make an adjustment to the distance to default implied by the model to

match historical default rates. The adjustment that we make is proportional to

asset volatility and to maturity. A lower leverage is necessary to compensate

for a too high asset volatility and a longer maturity that both increase the

risk of default. The adjustment is uniform for all observations in the rating

category. This is done to guarantee a unique solution since we only have one

calibrating equation. The adjusted leverage is equal to λie
−x. We could have

chosen to adjust asset volatilities instead of leverage. However, our results are

not dependent on our choice to adjust the leverage instead of the asset volatility.

We repeated the study by applying the adjustment to asset volatility instead of

leverage and we found similar quantitative results.
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B.3 Recovery rates

Moody’s annual reports provide average recovery rates by economic sector ρk, k ∈

K and average recovery rates by rating ρl, l ∈ L. K and L are the sets of eco-

nomic sectors and rating categories respectively. However, these reports do not

provide average recovery rates stratified by rating and economic sector simulta-

neously ρkl. Using ρk and ρl, we suggest a way to generate heterogeneity inside

rating categories.

We assume that the recovery rate of a firm in a given economic sector with a

given rating is equal to average recovery rate inside that economic sector scaled

by an adjustment factor which depends of the firm rating. That is ρkl has the

following form:

ρkl = αlρ
k.

With this form, two firms with the same rating but different economic sector

will have different recovery rates.

To identify αl, we require that the average recovery rate inside a given rating

category in our sample matches the historical average reported by the rating

agencies.

Let Ωk be the set of all observations falling in sector k, k ∈ K, in our sample

and let Ωl be the set of all observations falling in rating category l, l ∈ L in our

sample. The identification condition is:

∑
k∈K

card
(
Ωk ∩ Ωl

)
card (Ωl)

αlρ
k = ρl, l ∈ L.

This implies that:

αl =
ρl∑

k∈K
card(Ωk∩Ωl)
card(Ωl)

ρk
, l ∈ L.
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C The model of Leland and Toft [1996]

The optimal default boundary is given by:

VB =
C
r

(
A
rT −B

)
− AP

rT −
τCx
r

1 + αx− (1− α)B
,

Where:

C is the total coupon payment,

r is the risk free rate,

T is the maturity of new issues,

P is the total outstanding debt principal,

τ is the tax rate,

α is the bankruptcy cost parameter as a proportion of asset value at default,

A = 2ae−rTN
(
aσ
√
T
)
− 2zN

(
zσ
√
T
)

− 2

σ
√
T
n
(
zσ
√
T
)

+
2e−rT

σ
√
T
n
(
aσ
√
T
)

+ (z − a),

B = −
(

2z +
2

zσ2T

)
N
(
zσ
√
T
)
− 2

σ
√
T
n
(
zσ
√
T
)

+ (z − a) +
1

zσ2T
,

z =

((
aσ2

)2
+ 2rσ2

)1/2

σ2
,

a =
r − δ − σ2

2

σ2
,

x = z + a,
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σ is the asset volatility,

δ is the asset payout rate,

N (.) is the cumulative standard normal distribution,

n (.) is the standard normal density function.

The price of a new issue of maturity T is given by:

d (V, VB , T ) =
c

r
+ e−rT

(
p− c

r

)
(1− F (T )) +

(
ρVB −

c

r

)
G (T ) ,

F (T ) = N (h1 (T )) +

(
V

VB

)−2a

N (h2 (T )) ,

G (T ) =

(
V

VB

)−a+z

N (q1 (T )) +

(
V

VB

)−a−z
N (q2 (T )) ,

q1 (T ) =
−b− zσ2T

σ
√
T

,

q2 (T ) =
−b+ zσ2T

σ
√
T

,

h1 (T ) =
−b− aσ2T

σ
√
T

,

h2 (T ) =
−b+ aσ2T

σ
√
T

,

b = ln

(
V

VB

)
,

c is the coupon rate on the new issue : c = C
T ,

p is the principal of the new issue: p = P
T ,
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ρ = 1− α.

The cumulative physical probability of default at time t is given by

ΦT (P, α, τ, V, σ, δ, r, µ) = N

(
−b− λt
σ
√
t

)
+ e

−2λb

σ2 N

(
−b+ λt

σ
√
t

)
,

λ = µ− δ − σ2

2
.

In the original model, the coupon rates are determined in such a way the

new issues sell at par. This involves solving numerically the following equation

for the coupon rate.

d (V, VB , T ) = p.

The spread on new issues is then computed as

ΨT (P, α, τ, V, σ, δ, r) =
c

p
− r.

Calibration

When we calibrate to historical default rates, we solve the following equation

for ε:

1

n

n∑
i=1

ΦT (exp (ln (Pi) + ε) , αi, τi, Vi, σi, δi, r, µi) = φT .

Following Elkamhi et al. [2012] we choose:

C = rP.

We determine the yield y on new issues by solving the classical discounting
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equation.

c
1− eyT

y
+ pe−yT = d (V, VB , T ) .

The yield spread is given by

ΨT (P, α, τ, σ, δ, r) = y − r.

Following Leland [2004] we choose τ = 15%, δ = 6%, α = 30%. The other

parameters are the same as in the Merton model.
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Table 1: Typical leverage, asset volatility and bankruptcy cost for the Baa
rating category

HH -LT HH-MP HH-LS L-LT LT SS

Leverage 43.28% 43.28% 43.28% 43.30% 49% 36%
Asset volatility 25.05% 16.11% 29.10% 23% 20% 22%
Bankruptcy cost 87.29% N.A. N.A. 30% 50% N.A.

HH-LT is the Leland and Toft [1996] model calibrated by Huang and
Huang [2012]. HH-MP is the Mella-Barral and Perraudin [1997] model
calibrated by Huang and Huang [2012]. HH-LS is the Longstaff and
Schwartz [1995] model calibrated by Huang and Huang [2012]. L-LT is
the Leland and Toft [1996] model calibrated by Leland [2004]. LT is the
Leland and Toft [1996] as calibrated in their paper. SS is the estimation
of Schaefer and Strebulaev [2008].
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Table 2: Number of firms and observations by rating category and economic sector

Sector AAA AA A BBB BB B Below B Total

Panel A: Number of firms by rating category and economic sector

Transportation 1 2 6 20 22 25 13 48
Utilities 0 14 62 81 27 13 4 120
Health care 5 10 23 29 43 31 2 94
Capital Goods 1 10 39 75 100 46 14 180
Energy 1 3 15 41 45 30 4 96
Technology 2 9 23 41 53 45 11 101
Basic Materials 0 6 39 69 63 54 20 148
Communication services 1 5 12 7 16 21 9 43
Consumer cyclicals 1 11 53 113 169 159 55 290
Consumer Staples 2 17 50 63 66 60 27 166
Total 14 87 322 539 604 484 159 1286

Panel B: Number of firms and observations by economic sector

Transportation 1037 1771 10401 41343 25708 23531 4797 108588
Utilities 0 19219 87189 153839 22403 8959 475 292084
Health care 15180 17432 44691 39793 35817 20733 95 173741
Capital Goods 720 21014 90153 133967 121065 42107 2449 411475
Energy 2236 5361 35049 67866 60227 22651 384 193774
Technology 3561 15598 47182 48530 48090 30866 1961 195788
Basic Materials 0 14663 88234 134157 75762 51307 3772 367895
Communication services 2193 1650 15957 9722 6798 18722 2336 57378
Consumer cyclicals 436 16891 104274 154378 180342 105702 11927 573950
Consumer Staples 1945 35792 95620 100187 64604 56560 6492 361200
Total 27308 149391 618750 883782 640816 381138 34688 2735873

Note about the last column of Panel A: The total exclude duplicates due to changing firm ratings.
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Table 3: Historical default rates (%)

Rating Maturity in years

1 2 4 10

AAA 0 0.03 0.24 0.74
AA 0.02 0.07 0.24 0.84
A 0.07 0.17 0.43 1.59
BBB 0.21 0.6 1.53 4.33
BB 0.8 2.46 6.29 14.39
B 4.11 9.27 16.99 26.97
Below B 26.87 36.05 44.27 51.35

Source: Standard and Poors [2014]

Table 4: Average recovery rates by rating categories and maturity

Rating number of years prior to default

1 2 4 10

AAA 0.3724 0.4015 0.5043 0.3880
AA 0.3724 0.4015 0.5043 0.3880
A 0.3177 0.4756 0.3990 0.4182
BBB 0.4147 0.4302 0.4457 0.4269
BB 0.4711 0.4461 0.4081 0.4080
B 0.3790 0.3606 0.3806 0.4135
Below B 0.3550 0.3481 0.3533 0.3496

Note: Due to extremely small sample sizes in
the AAA category, we assume the same recovery
rates as AA firms. Due to data unavailability
at the 10 year horizon, we use the 5 year hori-
zon recovery rate as a proxy. Source: Moody’s
[2011]
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Table 5: Average recovery rates by economic sectors

Sector recovery rate

Basic Materials 0.353
Capital goods 0.353
Communication services 0.391
Consumer Staples 0.336
Consumer Cyclicals 0.336
Energy 0.461
Health Care 0.347
Technology 0.328
Transportation 0.379
Utilities 0.641

Source: Standard and Poors [2013]
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Table 6: Heterogeneous recovery rates across economic sectors

sector AAA AA A BBB BB B Below B AAA AA A BBB BB B Below B

T=1 T=2

Transportation 39.45% 36.63% 30.62% 38.66% 48.79% 39.89% 38.02% 42.53% 39.49% 45.83% 40.11% 46.20% 37.96% 37.29%
Utilities 61.95% 51.78% 65.39% 82.52% 67.47% 64.31% 66.79% 77.52% 67.83% 78.14% 64.19% 63.06%
Health care 36.12% 33.53% 28.03% 35.40% 44.67% 36.52% 34.81% 38.94% 36.15% 41.96% 36.72% 42.30% 34.75% 34.14%
Capital Goods 36.74% 34.11% 28.52% 36.01% 45.44% 37.16% 35.42% 39.61% 36.78% 42.69% 37.36% 43.03% 35.35% 34.73%
Energy 47.98% 44.55% 37.24% 47.03% 59.35% 48.52% 46.25% 51.73% 48.03% 55.75% 48.79% 56.20% 46.17% 45.35%
Technology 34.14% 31.70% 26.50% 33.46% 42.22% 34.52% 32.91% 36.81% 34.17% 39.67% 34.71% 39.98% 32.85% 32.27%
Basic Materials 34.11% 28.52% 36.01% 45.44% 37.16% 35.42% 36.78% 42.69% 37.36% 43.03% 35.35% 34.73%
Communication services 40.69% 37.79% 31.59% 39.89% 50.33% 41.16% 39.23% 43.87% 40.74% 47.28% 41.38% 47.66% 39.16% 38.47%
Consumer cyclicals 34.97% 32.47% 27.14% 34.28% 43.25% 35.37% 33.71% 37.70% 35.01% 40.63% 35.56% 40.96% 33.65% 33.06%
Consumer Staples 34.97% 32.47% 27.14% 34.28% 43.25% 35.37% 33.71% 37.70% 35.01% 40.63% 35.56% 40.96% 33.65% 33.06%

T=4 T=10

Transportation 53.42% 49.60% 38.45% 41.55% 42.26% 40.06% 37.84% 41.10% 38.16% 40.30% 39.80% 42.25% 43.52% 37.45%
Utilities 83.89% 65.03% 70.28% 71.48% 67.75% 64.00% 64.54% 68.16% 67.31% 71.46% 73.61% 63.33%
Health care 48.91% 45.41% 35.20% 38.04% 38.70% 36.68% 34.65% 37.63% 34.94% 36.90% 36.44% 38.69% 39.85% 34.28%
Capital Goods 49.75% 46.20% 35.81% 38.70% 39.37% 37.31% 35.25% 38.28% 35.54% 37.54% 37.07% 39.36% 40.54% 34.88%
Energy 64.97% 60.33% 46.77% 50.54% 51.41% 48.73% 46.03% 49.99% 46.42% 49.02% 48.41% 51.40% 52.94% 45.55%
Technology 46.23% 42.92% 33.28% 35.96% 36.58% 34.67% 32.75% 35.57% 33.03% 34.88% 34.44% 36.57% 37.67% 32.41%
Basic Materials 46.20% 35.81% 38.70% 39.37% 37.31% 35.25% 35.54% 37.54% 37.07% 39.36% 40.54% 34.88%
Communication services 55.11% 51.17% 39.67% 42.87% 43.60% 41.33% 39.04% 42.40% 39.37% 41.58% 41.06% 43.59% 44.90% 38.63%
Consumer cyclicals 47.36% 43.97% 34.09% 36.84% 37.47% 35.52% 33.55% 36.44% 33.83% 35.73% 35.28% 37.46% 38.59% 33.20%
Consumer Staples 47.36% 43.97% 34.09% 36.84% 37.47% 35.52% 33.55% 36.44% 33.83% 35.73% 35.28% 37.46% 38.59% 33.20%
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Table 7: Distribution of asset volatility and asset drifts by rating category

Rating mean sd CV range p99-p1 skewness kurtosis min p1 p25 p50 p75 p99 max

Panel A: Asset Volatility σV (in percent per annum)

AAA 25.08 6.67 0.27 45.31 35.42 1.56 7.93 13.22 13.84 20.61 24.19 28.32 49.26 58.52
AA 25.39 6.98 0.27 57.41 34.87 0.89 4.73 11.47 12.13 20.39 24.42 29.53 47.00 68.88
A 27.73 10.92 0.39 111.10 54.16 3.15 22.17 11.47 12.51 21.08 26.00 31.69 66.67 122.58
BBB 31.32 19.43 0.62 351.73 73.38 9.31 136.01 11.47 12.47 22.64 28.68 36.16 85.84 363.21
BB 40.31 19.21 0.48 313.75 101.05 4.26 39.05 11.48 15.76 29.36 36.83 46.37 116.81 325.23
B 49.71 28.87 0.58 398.54 196.34 4.69 38.33 11.82 16.67 34.63 44.18 56.23 213.01 410.37
Below B 65.34 53.99 0.83 391.93 286.66 3.60 17.63 18.49 19.43 40.00 52.33 67.70 306.09 410.43

Panel B: Asset drift µV (in percent per annum)

AAA 14.24 12.62 0.89 77.35 60.79 0.46 3.21 -17.59 -12.00 5.16 13.11 21.92 48.78 59.77
AA 12.51 11.30 0.90 101.28 54.41 0.79 4.09 -20.63 -9.17 5.04 10.67 18.56 45.24 80.65
A 12.61 12.87 1.02 137.66 66.96 1.60 9.29 -28.16 -11.23 4.75 10.90 18.42 55.73 109.50
BBB 13.03 17.10 1.31 249.11 83.83 3.03 25.65 -28.19 -15.74 3.41 10.48 19.50 68.09 220.93
BB 17.54 20.97 1.20 249.07 105.98 1.43 9.40 -28.19 -20.95 3.65 15.05 28.07 85.03 220.88
B 13.95 24.44 1.75 246.23 115.82 1.82 10.52 -28.19 -24.56 -2.25 9.61 25.40 91.26 218.04
Below B 8.10 34.56 4.27 221.78 184.43 2.48 10.13 -28.19 -27.18 -12.09 -1.29 14.03 157.25 193.58

Panel C: Total leverage (in percent per annum)

AAA 8.76 8.49 0.97 64.36 38.44 1.80 6.81 0.10 0.14 2.90 6.41 11.39 38.58 64.46
AA 16.42 13.59 0.83 99.69 65.90 1.62 5.94 0.23 1.01 7.20 11.97 20.84 66.91 99.93
A 26.44 19.05 0.72 269.62 81.48 1.16 4.59 0.05 1.07 12.21 21.14 37.16 82.56 269.67
BBB 40.10 29.81 0.74 1044.56 125.14 4.88 95.13 0.13 2.82 19.85 33.82 54.69 127.96 1044.69
BB 58.95 47.91 0.81 946.99 221.05 2.64 19.40 0.13 4.02 26.97 46.11 78.02 225.06 947.12
B 107.62 85.82 0.80 1519.63 400.07 3.04 23.88 1.62 8.20 50.16 87.24 142.07 408.27 1521.26
Below B 219.11 261.44 1.19 2695.82 1590.32 5.00 36.73 3.67 14.01 89.23 151.48 263.80 1604.33 2699.48

This table shows summary statistics and quantiles of firm fundamentals across S&P credit ratings. CV stands for Coefficient of Variation
and is defined as the ratio of the standard deviation to the mean. Range is the maximum minus the minimum. Panels A, B and B display
statistics for asset volatility, asset drift and total leverage respectively. The first column presents the rating categories considered. µV , the
drift of asset returns (in percent per annum), is calculated for each firm and year as the mean of daily asset returns multiplied by 252. σV ,
the instantaneous volatility of asset returns (in percent per annum), is calculated for each firm as the standard deviation of the daily asset
return multiplied by the square root of 252. See appendix B for details about the estimation procedure. Total leverage is short term debt
plus long term debt divided by asset value.
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Table 8: Comparison of calibrated Vs uncalibrated default sizes

Rating Spread (basis
points)

Historical
spread (basis
points)

Default size Default sizes
of Huang and
Huang [2012]

T=4 T= 10 T=4 T= 10 T=4 T= 10 T=4 T= 10

Panel A: Uncalibrated spreads and default sizes

AAA 0 3 55 63 0.8% 4.7% 2.1% 15.8%
AA 9 15 65 91 13.2% 16.1% 9.2% 15.6%
A 53 56 96 123 55.4% 45.4% 10.3% 19.0%
BBB 215 178 158 194 136.0% 91.8% 20.3% 29.0%
BB 604 396 320 320 188.6% 123.6% 53.9% 60.0%
B 1474 841 470 470 313.7% 179.0% 94.8% 82.5%

Panel B: Calibrated spreads and default sizes

AAA 1 1 55 63 1% 2% 2.1% 15.8%
AA 5 5 65 91 8% 5% 9.2% 15.6%
A 11 14 96 123 11% 11% 10.3% 19.0%
BBB 62 66 158 194 39% 34% 20.3% 29.0%
BB 159 185 320 320 50% 58% 53.9% 60.0%
B 447 376 470 470 95% 80% 94.8% 82.5%
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Table 9: Comparison of uncalibrated model physical default rates and historical
default rates

Rating Uncalibrated
model DP

Historical DP Ratio

T=4 T= 10 T=4 T= 10 T=4 T= 10

AAA 0.20% 1.41% 0.24% 0.74% 0.9 1.9
AA 0.54% 2.51% 0.24% 0.84% 2.3 3.0
A 2.76% 6.55% 0.43% 1.59% 6.4 4.1
BBB 9.92% 15.64% 1.53% 4.33% 6.5 3.6
BB 21.99% 26.20% 6.29% 14.39% 3.5 1.8
B 47.03% 49.68% 16.99% 26.97% 2.8 1.8
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Table 10: Distribution of calibrated leverage ratios by rating category

Rating mean sd CV range p99-p1 skewness kurtosis min p1 p25 p50 p75 p99 max

Panel A: Leverage at 1 year maturity

AAA 7.49 6.99 0.93 62.00 35.95 2.05 9.75 0.09 0.11 2.53 5.73 10.30 36.06 62.09
AA 11.77 9.91 0.84 92.18 45.34 1.82 7.57 0.23 0.76 5.01 8.87 15.21 46.09 92.41
A 15.68 11.90 0.76 155.00 53.15 1.43 5.77 0.05 0.62 7.05 12.22 21.54 53.77 155.06
BBB 8.53 6.54 0.77 219.74 27.58 5.19 98.42 0.03 0.68 4.17 7.14 11.58 28.26 219.76
BB 15.00 12.50 0.83 275.96 59.46 2.88 24.48 0.05 1.03 6.73 11.52 19.83 60.49 276.00
B 23.81 19.17 0.81 536.31 89.68 3.09 25.34 0.37 1.81 11.01 19.21 31.42 91.49 536.68
Below B 62.56 74.91 1.20 1078.50 400.00 4.56 35.52 1.21 3.26 23.31 40.80 74.79 403.26 1079.70

Panel B: Leverage at 2 year maturity

AAA 8.45 7.88 0.93 69.91 40.53 2.05 9.75 0.10 0.12 2.85 6.46 11.61 40.65 70.01
AA 12.62 10.62 0.84 98.87 48.63 1.82 7.57 0.24 0.81 5.37 9.52 16.32 49.44 99.11
A 14.82 11.25 0.76 146.50 50.23 1.43 5.77 0.05 0.59 6.67 11.55 20.36 50.82 146.55
BBB 13.44 10.31 0.77 346.09 43.43 5.19 98.42 0.04 1.07 6.56 11.25 18.25 44.51 346.13
BB 18.29 15.24 0.83 336.39 72.48 2.88 24.48 0.05 1.26 8.20 14.04 24.17 73.74 336.45
B 27.35 22.03 0.81 616.10 103.02 3.09 25.34 0.42 2.08 12.64 22.07 36.10 105.10 616.52
Below B 65.89 78.89 1.20 1135.80 421.25 4.56 35.52 1.28 3.43 24.55 42.96 78.76 424.68 1137.10

Panel C: Leverage at 4 year maturity

AAA 8.99 8.39 0.93 74.40 43.13 2.05 9.75 0.11 0.13 3.04 6.87 12.36 43.27 74.51
AA 12.36 10.40 0.84 96.80 47.61 1.82 7.57 0.24 0.79 5.26 9.32 15.98 48.40 97.04
A 12.95 9.83 0.76 128.03 43.90 1.43 5.77 0.04 0.51 5.83 10.09 17.79 44.41 128.08
BBB 14.14 10.84 0.77 364.04 45.69 5.19 98.42 0.04 1.13 6.90 11.83 19.19 46.82 364.08
BB 20.75 17.29 0.83 381.69 82.24 2.88 24.48 0.06 1.43 9.30 15.93 27.42 83.67 381.75
B 28.69 23.10 0.81 646.25 108.06 3.09 25.34 0.44 2.18 13.26 23.15 37.86 110.24 646.70
Below B 59.80 71.60 1.20 1030.90 382.33 4.56 35.52 1.16 3.11 22.28 38.99 71.49 385.45 1032.00

Panel C: Leverage at 10 year maturity

AAA 5.69 5.30 0.93 47.06 27.28 2.05 9.75 0.07 0.08 1.92 4.35 7.81 27.37 47.13
AA 8.45 7.11 0.84 66.17 32.55 1.82 7.57 0.16 0.54 3.59 6.37 10.92 33.09 66.34
A 9.27 7.04 0.76 91.62 31.41 1.43 5.77 0.03 0.37 4.17 7.22 12.73 31.78 91.65
BBB 10.43 7.99 0.77 268.40 33.68 5.19 98.42 0.03 0.83 5.09 8.72 14.15 34.52 268.44
BB 21.65 18.04 0.83 398.23 85.80 2.88 24.48 0.07 1.49 9.71 16.62 28.61 87.29 398.29
B 22.63 18.22 0.81 509.65 85.22 3.09 25.34 0.35 1.72 10.46 18.26 29.86 86.94 510.00
Below B 31.43 37.63 1.20 541.75 200.92 4.56 35.52 0.61 1.64 11.71 20.49 37.57 202.56 542.36

This table shows summary statistics and quantiles of leverage ratios across S&P credit ratings at different maturities. CV
stands for Coefficient of Variation and is defined as the ratio of the standard deviation to the mean. Range is the maximum
minus the minimum. For each maturity and rating, the leverage ratio is calibrated to match the historical default rate report
by S&P for this rating and maturity. See appendix B for details on the calculation and calibration of leverage.
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Table 11: Convexity bias

Maturity (Years)

Rating 1 2 4 10

Panel A: Homogeneous recovery

AAA 0 0 1 1
AA 4 6 5 5
A 6 7 10 12
BBB 34 52 59 56
BB 75 109 93 46
B 362 266 132 98
below B 353 96 172 302

Panel B: Heterogeneous recovery

AAA 0 0 1 1
AA 4 6 5 5
A 7 7 11 12
BBB 34 52 60 57
BB 77 110 94 47
B 359 265 132 99
below B 358 98 173 303
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Table 12: Heterogeneity bias

Maturity (Years)

Rating 1 2 4 10

Panel A: Homogeneous recovery

AAA 0 -2 -9 -24
AA 2 1 -4 -19
A -2 -3 -9 -28
BBB 16 19 5 -29
BB 5 -30 -94 -154
B 33 -22 -55 -61
below B 635 468 378 335

Panel B: Heterogeneous recovery

AAA 0 -2 -9 -24
AA 2 1 -4 -19
A -1 -2 -9 -28
BBB 16 19 6 -29
BB 6 -28 -93 -154
B 30 -23 -55 -61
below B 640 470 379 336
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Table 13: Typical firm: Calibrated and uncalibrated asset volatilities

Calibrated asset volatility to
historical default rates(%)

Maturity (years)

Rating 1 2 4 10 Average asset
volatility(%)

AAA 25.08 51.35 45.47 43.43 25.08
AA 59.05 46.55 40.21 39.11 25.39
A 56.88 46.87 41.83 41.14 27.73
BBB 79.48 55.23 47.05 46.13 31.32
BB 74.51 60.52 54.72 54.12 40.31
B 74.59 62.96 58.63 58.95 49.71
Below B 59.99 54.93 57.93 63.81 65.34
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Table 14: Robustness checks

rating H-H base case case 1 case 2 case 3 case 4 case 5 case 6 case 7
Maturity = 4 years

AAA 2% 1% 2% 1% 0% 4% 4% 0% 1%
AA 9% 8% 11% 9% 5% 8% 6% 3% 7%
A 10% 11% 15% 11% 11% 9% 3% 11% 8%
BBB 20% 39% 47% 39% 38% 22% 3% 56% 22%
BB 54% 50% 72% 51% 109% 34% 16% 120% 39%
B 95% 95% 143% 98% 140% 55% 55% 164% 73%

Maturity = 10 years
AAA 16% 2% 3% 2% 7% 2% 0% 0% 1%
AA 16% 5% 8% 6% 19% 5% 1% 3% 5%
A 19% 12% 16% 12% 37% 6% 0% 11% 9%
BBB 29% 34% 43% 34% 74% 12% 0% 42% 14%
BB 60% 58% 95% 59% 151% 48% 30% 94% 44%
B 83% 80% 131% 82% 136% 50% 43% 114% 53%

This table shows results of our robustness checks. Column 2 labeled H-H reports the base
case default size of Huang and Huang [2012]. Column 3 reports our base case default
size with heterogeneity. Case 1: Average default probability is increased by 50%. Case 2:
Heterogeneity in recovery rates is increased by attributing truncated normally distributed
random recovery rates to firms inside rating category while matching average historical
recovery rates. Case 3: The model default rate for each bond is calibrated to match
the historical default rate for the corresponding rating category and horizon. Case 4:
Leverages are fixed to the sample average and asset volatilities are adjusted to match
historical default rates. Case 5: Leverages are fixed to the same average as Huang and
Huang [2012] and asset volatilities are adjusted to match historical default rates. Case
6: The sample period is restricted to 1985-1998, the same as Huang and Huang [2012].
Case 7: Biased free default sizes based on the Leland and Toft [1996] model.
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